
ARTICLE INFORMATION

Author

Robert W.Gehl & Sarah A. Bell

Affiliation

University of Utah

Publication Date

28 September 2012

PRINT OPTIONS

Print This Article

Download article as PDF

HETEROGENEOUS SOFTWARE ENGINEERING:
GARMISCH 1968, MICROSOFT VISTA, AND A
METHODOLOGY FOR SOFTWARE STUDIES

The foreword to MIT’s Software Studies series suggests its purpose is to “make critical,

historical, and experimental accounts of (and interventions via) the objects and

processes of software.”1 Methodologically diverse, the international field of software

studies welcomes perspectives from the arts and humanities, the social sciences, as well

as computer science and engineering. Recent proposals include Noah Wardrip-Fruin’s

operational logics of expressive processing,2 Matthew Kirschenbaum’s forensics,3 and

Lev Manovich’s genealogy of cultural software.4 The objective is not to homogenize the

study of software, but rather to explore transdisciplinary avenues toward developing

“reflexive thinking about [the] entanglements and possibilities”5 of computing. Moreover,

the field is developing a normative stance towards the powerful organizations behind the

software that shapes so much daily life. As Matthew Fuller asks, “What kind of critical

and inventive thinking is required to take the various movements in software forward into

those areas which are necessary if software oligopolies are to be undermined?”6 Indeed,

given the power of firms such as Microsoft, Google, Apple, and Facebook, “it is essential

for our political future that people develop the ability to think critically about software

systems.”7 Software studies, then, is about radical critique of software systems; it

proposes not to take computers “at interface value”8 but rather delve into the hierarchical

layers of abstraction that comprise hardware and software systems, decompose them,

hack them, and alter them in progressive ways.

This essay describes one methodological scaffolding that can be employed in such a

cause. Based in John Law’s concept of heterogeneous engineering, and taking care to

accommodate Kirschenbaum’s challenge to software studies for materialist methods,9

our proposed methodology and analysis offers an entry point, a conjuncture, at which

articulations between product, producer, process, and user can be usefully interrogated.

As Kirschenbaum argues, “Software studies is what media theory becomes after the

bubble bursts.”10 That is, this field draws attention to the ways in which digital objects are

“interpenetrated by material patterns and circumstances.”11 Intangible objects like

software are material in that they are the products of processes that include “white

papers, engineering specs, marketing reports, conversations and collaborations, intuitive

insights and professionalized expertise, venture capital (in other words, money), late

nights (in other words, labor), Mountain Dew and espresso…. material circumstances

that leave material traces.”12 In sum, Kirschenbaum advocates “a commitment to

meticulous documentary research to recover and stabilize the material traces of new

media – a remembrance of things past, but also the pre-condition for . . . a ‘theory of the

present.’”13 In other words, such methods promise to uncover the situatedness of

intangible objects within the social zones of material and ideological circumstance. To

expand on Kirschenbaum’s own analogy though, methods and methodologies of

software studies research, at least those emerging from a critical vein, must be about

more than “adding memory.” Adrian Mackenzie acknowledges that “the characteristics of

software as a material object, as a means of production, as a human-technical hybrid, as

medium of communication, as terrain of political-economic contestation” make software

difficult to represent. Its mutable, contingent nature presents both a challenge to

research, and makes it imperative that research proceed to interrogate software’s

“sociality.”14

It is our intention to meet these critical challenges. In keeping with the methodology we

propose, this paper is a series of associations. First, we explore the theory of

heterogeneous engineering, drawing on the work of Science and Technology Studies

(STS) theorists such as Law and Bruno Latour. Next, we read a key document in the

ISSUE ARTICLES

Not just another database: the

transactions that enact young

offenders

The Algorithmization of the Hyperlink

Relational and Non-Relational Models

in the Entextualization of Bureaucracy

Objects of Intense Feeling: The Case

of the Twitter API

Critical Codes – from forkbomb to

brainfuck

Review of “Inventing the Medium.

Principles of Interaction Design as a

Cultural Practice”

OTHER JOURNAL CONTENT

Abstract

Reviews

Special Projects

FIND ARTICLES BY AUTHOR

Search for

 Find

Home About Computational Culture CFPs & Events Editorial Submissions Contact

Computational Culture
a journal of software studies

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

1 of 20 01/27/2014 03:46 PM

history of software engineering, the report from the 1968 Garmisch NATO conference,

arguing that the engineering metaphor proposed is an association of technological and

discursive elements – in sum, we argue software engineering is heterogeneous

engineering and should be interpreted as such. After establishing software engineering

as a form of heterogeneous engineering, the central case study of the paper is the

production of the “Windows Vista Experience,” or the various graphical interfaces

included with that Microsoft OS. Using internal Microsoft emails, technical documents,

news reports, court testimony, and Microsoft fan writings, we show that the production of

a graphical interface does not simply involve the coding of alpha transparencies, smooth

window transitions, and “eye candy:” it is an association of heterogeneous elements,

including theories of human-computer interaction, graphics cards, chipsets, marketing

plans, manufacturers, retail sales clerks, and end users, all of which is intended to cohere

into a functioning (and in this case profitable) network. And, as we show, such networks

are always unstable, and can be dissociated by material and discursive contestation.

Finally, in the conclusion, we will re-link our analysis to the larger field of software

studies.

1. Heterogeneous engineering

As Science and Technology Studies (STS) theorists have shown, technological artifacts

are not simply neutral tools used by people, nor are they the result of creative geniuses

who discover them and bring them to an awaiting world. Rather, artifacts are caught up in

webs of discursive and material determinants: discourses, political economic systems,

the desires and anxieties of various social groups, the general intellect, and whatever

material properties can be brought into the conceptual grasp of the general intellect.

To articulate these webs, STS theorist and sociologist John Law argues that we should

start with the “metaphor of the heterogeneous network.”15 Arising out of Latour and

Callon’s actor-network theory,16 Law’s heterogeneous network “is a way of suggesting

that society, organizations, agents, and machines are all effects generated in patterned

networks of diverse (not simply human) materials.”17 Law wants to break discursive and

technological totalities into their constituent elements, or heterogeneous elements, to

discover “the complexity and contingency of the ways in which these elements

interrelate” and document “the way in which solutions are forged in situations of

conflict.”18

In doing so, we can trace the process of “heterogeneous engineering,” which associates

these elements into a coherent system. Krige’s discussion of heterogeneous engineering

in science is a concise explanation. This theory

“insists that scientific success demands not just technological

innovation with refractory natural materials, but also the mobilization of

obdurate human and material resources, the building of alliances, the

deflection or silencing of opposition, and the development of persuasive

rhetorics. Scientific achievement is a social accomplishment.”19

In other words, “The argument is that those who build artifacts do not concern

themselves with artifacts alone, but must also consider the way in which the artifacts

relate to social, economic, political, and scientific factors. All of these factors are

interrelated, and all are potentially malleable.”20 Heterogeneous engineering is the

building of networks and systems of both technical and discursive elements.

For example, if we consider an object such as a 16th century Portuguese galley ship,21

we might simply view it as a successful system: obdurate, powerful, seemingly

unassailable, built out of human knowledge, sweat, and not a little imperial ambition. The

ship, we might say, is a solution to an apparent problem: the problem of oceangoing

trade, travel, and conquest. However, not all is as it appears. “Solutions” in

heterogeneous engineering are not simply the best possible technology or technique for

the job at hand. Rather, they are “associations” of technological and discursive elements,

nearly all of which constantly threaten to dissociate the object in question. The

associated elements are “difficult to tame or difficult to hold in place. Vigilance and

surveillance have to be maintained, or else the elements will fall out of line and the

network will start to crumble.”22 Returning to the example of the ships, all of these

elements must be associated and negotiated with: the wood, pitch, cloth, and rope; the

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

2 of 20 01/27/2014 03:46 PM

sailors’ knowledge, skills, beliefs, and willingness to labor aboard the ship; the

Portuguese government’s ability to finance ships and desire to put them to sea; the

scientific and religious knowledge of the day; myths and legends of sailing; natural

phenomena such as wind and waves; knowledge of and cooperation of the stars shining

above; geographical possibilities; and technological advancements such as the compass

and sailing techniques. All of which crystallizes into a ship, and most importantly, all of

which can tear apart a ship or be torn apart by any number of factors: storms at sea,

other nations’ ships, the failure of the crew, the indifference of the government,

technological shortcomings, or simply a bad job building the hull. In short, every

heterogeneous element is resistant to being put to the intended purpose.

ILLUSTRATION 1: A shot from Latour's Paris: Ville Invisble. Source

Thus, the theory of heterogeneous engineering sees – indeed, privileges – two key

processes in a technological system: association and dissociation. Both are explained in

Latour’s Assembling the Social and put into practice in his Web project, Paris: Ville

Invisible. Latour argues that the tracing of linkages between heterogeneous elements is

the social, which is to say these linkages are associations. In actor-network theory, the

actors (human, nonhuman, material, and immaterial elements) make connections among

themselves to form a system. This linking is association, and it “is visible only by the

traces it leaves (under trials) when a new association is being produced between

elements which themselves are in no way ‘social.’”23 It is the sociologist’s job to faithfully

trace these linkages to discover associations. Key here are the ideas of the trial and

newness: heterogeneous engineering theory holds that associated elements are always

under stress, always changing, and of course, possibly subject to their destruction – i.e.,

dissociation. That is, associated elements might be pulled apart, dissociated, by internal

or external actors which link them together in yet new systems.

In this sense, then, this heterogeneous engineering is sympathetic to articulation theory

and Marxian dialectics, which also trace and historicize controversies, contradictions, and

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

3 of 20 01/27/2014 03:46 PM

antagonisms and describe how actors stabilize these problems into coherent systems,

whether they be technical, discursive, or economic, as well as how those systems can

dissociate. More importantly for our purposes here, heterogeneous engineering helps us

continue projects such as that of Adrian MacKenzie’s Cutting Code, which “treats

software as a multi-sited associative or concatenated entity.”24 Moreover, it also orients

us to the tricky question of agency.

The “Heterogeneous Engineer”

The agent that attempts to associate these elements is the “heterogeneous engineer,”

who is, of course, an effect of a network of heterogeneous elements. Like any expert, the

engineer’s knowledge is an instantiation of power/knowledge, formulated via access to

technological systems and in discursive artifacts like diplomas and certifications.25 The

engineer operates from a privileged subject-position. As Krige argues in his analysis of

the 1984 Nobel Prize in physics, “only a few, generally outstanding, but always

well-connected individuals, situated at appropriate nodes in the social network, are able

to weave together the scientific, technological, institutional, and political threads that

together constitute their project.”26 While Krige does not critically consider precisely why

some individuals become “well-connected and outstanding,” if we recall actor-network

theory, we see that the engineer is a particular effect (as Law might say, a

“punctualization”)27 of a larger technocratic knowledge and power system. As such, the

privileged actor-network “engineer” is more capable of associating elements into a

coherent system precisely because this subject is itself associated to do this very task.

To be certain, a theory that holds that some subjects alone are privileged to conquer

natural, technical, and discursive systems will come under critique by those who are leery

of theories that maintain or reify power inequalities or hierarchies. Susan Leigh Star’s

work explores this element of heterogeneous engineering. “By experience and by

affinity,” Star notes,

“some of us begin not with [the manager or the executive], but with the

monster, the outcast. Our multiplicity has not been the multiple

personality of the executive, but that of the abused child, the half-breed.

We are the ones who have done the invisible work of creating a unity of

action in the face of multiplicity of selves, as well as, and at the same

time, the invisible work of lending unity to the face of the torturer and

executive. We have usually been the delegated to, the disciplined.”28

Star’s emphasis on those subjects who are excluded by sociotechnical standards and

practices reminds us to mind the margins and the “monsters” and Others that inhabit

them, because of course no system can operate without the labor and affect of the

marginalized and disciplined. To only theorize the engineer is to shortchange or even

ignore these Others (and, as we will see, Others can find ways to assert themselves).

However, rather than discard the metaphor of the “heterogeneous engineer” because it

privileges one particular subject over the multiplicity of others that might associate

elements into a coherent system, we want to keep the concept because of this discursive

privileging. The concept of “the engineer” – with all its power/knowledge implications – is

especially useful to critique a field such as software engineering, because software

engineering explicitly uses the metaphor of the engineer as its core organizing principle,

as we will discuss below. And, as we will see, software engineering has been defined as

such in part against its Others, including other practices of software production, other

fields of engineering, the laborers who produce software, and those who buy it and use it.

The theory of heterogeneous engineering, as applied to the practice of software

engineering, is simultaneously a theory of how engineers do their work and how their

work can dominate others (particularly laborers and users). It is thus a theory of power,

one very capable of allowing us to critique the development, uses, heteroclites,29 and

lacunae of software artifacts. Thus, we can hold onto the concept of the engineer, so long

as we mind its margins and the Others that help constitute it or even overwhelm and

destroy it.

2. From “mushyware to firmware”: the software engineering metaphor

Methodologically, of course, applying this theory of heterogeneous engineering is

incredibly complex. As Latour notes, “one has to substitute the painful and costly

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

4 of 20 01/27/2014 03:46 PM

longhand of… associations” for the quick and easy abstractions we are used to.30 If

technical and discursive phenomena are given the same weight, if we are to move past

simple cause-and-effect to overdetermination, and if we are to trace articulations to see

how elements are associated into a coherent system (one which could dissociate at any

moment!), where do we begin, especially since we are looking at software? Do we start

with lines of code, algorithms, the platform(s), the habits of programmers, the desires of

users, the marketing of software, the global ambitions of transnational software company

CEOs? Fortunately, the metaphor of engineering is not only deployed in heterogeneous

engineering; it is deployed in software production as well. This metaphor provides us with

a few entry points.

ILLUSTRATION TWO. A panel of participants in the 1968 Garmisch conference on Software Engineering. Last names, from left to right: Smith, Paul, Perlis, Randell, Ross,

Graham, Goos, van der Poel, McIlroy, and Kinslow. Source: http://homepages.cs.ncl.ac.uk/brian.randell/NATO/N1968/GROUP7.html>

As Mahoney notes, the electronic digital stored-program computer was a the product of a

convergence of two nineteenth century developments, the design of mechanical

calculators and the development of mathematical logic. Both viewed programming as

incidental, but as the computer went commercial in the 1950s, the need for quality

programming became of sudden concern, and those stepping in to fill the need for

programmers were often not scientists, mathematicians, or electrical engineers.31

Prompted by recognized “crises” in software production, including a shortage of

programmers, poor reliability of many programs, and unsustainable cost overruns,32 in

1968 the NATO Science Committee convened a conference in Garmisch, Germany

under the title “Software Engineering.”33 “The phrase ‘software engineering’ was

deliberately chosen as being provocative, in implying the need for software manufacture

to be based on the types of theoretical foundations and practical disciplines, that are

traditional in the established branches of engineering.”34 The academics, managers,

programmers, and marketers who participated in the conference adopted the discursive

and technical concept of “engineering,” thus associating the practices of software

production with respected and established practices such as building bridges and

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

5 of 20 01/27/2014 03:46 PM

buildings. Related metaphors such as “architecture,” “implementation,” “specification,”

and “large systems” are also debated, deployed, and developed by the participants

throughout the conference proceedings. To be certain, when taken literally to mean a

shared body of professional practice based in the mechanics of the physical world,

“engineering” applied to the production of software remains controversial.35 However, the

metaphor of engineering persists to this day as evidenced by disciplinary documents

such as IEEE’s Guide to the Software Engineering Body of Knowledge, the ACM’s

Software Engineering Code of Ethics and Professional Practice, and recognition of ABET

as the accreditation body for computer science and software engineering programs in the

U.S..

Of course, because the engineering metaphor was only newly proposed for software

production, it was in need of much elaboration during the conference. Since computer

hardware production was based on more established practices such as electrical and

metallurgical engineering, the participants in the NATO conference often pointed to

hardware production as a discursive and methodological model for software production.

In this comparison, however, software people felt inadequate. M.D. McIlroy noted, “We

undoubtedly get the short end of the stick in confrontations with hardware people

because they are the industrialists and we are the crofters. Software production today

appears in the scale of industrialization somewhere below the more backward

construction industries.”36 As A. d’Agapeyeff argued, “Programming is still too much of

an artistic endeavour. We need a more substantial basis to be taught and monitored in

practice on the: i) structure of programs and the flow of their execution; ii) shaping of

modules and an environment for their testing; iii) simulation of run time conditions.”37

J.W. Smith argued, “There is a tendency that designers use fuzzy terms, like ‘elegant’ or

‘powerful’ or ‘flexible’…. What is lacking is discipline, which is caused by people falling

back on fuzzy concepts, instead of on some razors of Occam, which they can really use

to make design decisions.”38 In his keynote, A.J. Perlis summed up the problem: “Our

goal this week is the conversion of mushyware to firmware, to transmute our products

from Jello to crystals.”39 The engineering metaphor promised to provide the language,

rigor, and methodology to shift software production from a “backwards” or (perhaps

worse) “fuzzy,” “artistic,” or “mushy” field to one that could hold its own against other

forms of engineering.

In addition, by adopting this metaphor, software producers could draw on all the related

practices involved in engineering, particularly those of managing labor. Returning to

d’Agapeyeff’s lament, if software production is an art, then managing software producers

(who would be, following the metaphor, creative artists) is a very difficult task. However,

by drawing on the engineering metaphor, participants in the conference began the

process of establishing workflows, decomposing tasks into small, manageable parts,

predicting costs for each stage, and organizing programmers into hierarchies.40 M.D.

McIllroy advocated “mass production techniques” including subassemblies and reusable

modules.41 Bell Lab’s J.A. Harr proposed various quanta for managing labor: number of

programmers, years, “man years,” words (i.e., a fixed number of bits), and words per

man year. The literature following the 1968 conference is replete with references to these

quanta.42 These management techniques are part and parcel of the engineering

metaphor, and they allow software companies to discipline their workforce. Returning to

Perlis’s keynote, “Stability in our goals, products and performances can only be achieved

when accompanied by a sufficient supply of workers who are properly trained, motivated,

and interchangeable.”43 The engineering metaphor allows software companies to

imagine (and discipline) workers who are not artists or researchers but rather engineers

working in a strict hierarchy with measurable goals and outcomes. And of course, if any

worker is not producing the required words per man-month, he or she is interchangeable

with another, more productive worker.

Finally, the use of the software engineering metaphor altered the relationship between

producers and consumers. Rather than programming as an art form, or programming for

research and experimentation, the engineering metaphor implies programming for use.

This of course orients production towards particular, idealized forms of consumption:

unlike artistic production which is meant be to appreciated for aesthetic purposes, or

research production which is meant for producing knowledge for knowledge’s sake,

engineering produces for specified tasks and purposes. Engineering also delimited what

a software producer should promise to a user: the adoption of the term “specification”

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

6 of 20 01/27/2014 03:46 PM

allowed software engineers to think of their task as the production of objects that do

specific tasks and no more, thus heading off unattainable user expectations.44 While

users are the target for software production they also have to be managed, because “The

customer often does not know what he needs, and is sometimes cut off from knowing

what is or what might be available.”45 User demands have to be filtered and mediated by

those on the inside.46 Following Woolgar, this process might be called “configuring the

user,” constructing the user as an entity “outside” the software production firm whose

expectations and practices have to be carefully managed.47

Historians of software now agree that the 1968 NATO conference in Garmisch was the

landmark point at which “engineering” became the predominant paradigm for the

development of software in both industry and academia. It was the start of thinking about

the organizing methods and disciplined practices that were needed to develop

increasingly large-scale software products.48 Beyond the conference, the engineering

metaphor has persisted in software production. Organizations such as the IEEE, ACM,

and ABET have solidified the metaphor in technical manuals, training programs,

academic and industry conferences, and the production of industry standards.

Indeed, the engineering metaphor has persisted through tumultuous changes in the

history of software, including the unbundling of software from hardware and the transition

from mainframes to minicomputers to personal computers. Boehm characterizes the

history of software engineering as one dominated by reactions to scalability. The

engineering metaphor has been adapted through the 1980s focus on productivity, the

1990s focus on concurrent processes, and the more recent trends towards agility and

global integration.49 Since its rise to market dominance in the personal computer

software industry, Microsoft has explicitly adopted models of software engineering, using

the category to describe not one role but the “collection of disciplines responsible for

designing, developing, and delivering” its products.50 Its engineers are defined as

“[thriving] on simplifying people’s jobs and lives and helping them reach new heights

through ever-advancing technologies.”51 Judging from popular reports on Microsoft labor

practices, such engineers reach for such new heights within a highly hierarchical

structure of decomposed tasks and long hours obsessing over bug reports.52 Implying

both the management hierarchy and user focus of the software engineering paradigm,

Microsoft further articulates this commitment in publications from its research arm,

Research in Software Engineering (RiSE).53 For example, in a recent paper presented at

the ACM Conference on Computer Supported Cooperative Work (CSCW), Microsoft

researchers discussed their empirical methods, specifically invoking Brooks’ discussion

of workflow coordination in The Mythical Man Month as a touchstone for discussing the

“developer-module network” for Windows Vista, a network that takes into account

“thousands of developers and thousands of binaries – executables (.exe), shared

libraries (.dll) and drivers (.sys).”54 Their conclusions echo Brooks’ declaration that

product quality is strongly affected by organizational structure. Indeed, in a well

documented shake-up during the development of what became the Vista OS, Jim Allchin,

co-head of the Platform Products and Services Division, and Amitabh Srivastava were

tasked with streamlining processes to overcome a dysfunctional environment of 4000

programmers and testers working with 50 million lines of code.55

Immediately, it should be apparent that software engineering from Garmisch 1968

through today is heterogeneous engineering par excellence, because the twin processes

of association and dissociation are clearly present. Software engineers associate

technological elements (computer platforms, hardware, programming languages, user

interfaces), human elements (managers, coders, users, education, corporations), and

discursive elements (metaphors, sales pitches, theories of needs) into cohesive artifacts.

And, in keeping with the concept of the engineer as an effect of a larger, rationalized

power/knowledge system, software’s use of the engineering metaphor reminds us of the

highly hierarchical nature of this form of production. As Garmish conference participant

Peter Naur argues, “… software designers are in a similar position to architects and civil

engineers, particularly those concerned with the design of large heterogeneous

constructions, such as towns and industrial plants. It therefore seems natural that we

should turn to these subjects for ideas about how to attack the design problem.”56 That

is, the engineering metaphor can provide software producers with the power/knowledge

to deal with large problems in the same privileged manner as civil engineers have

enjoyed in modernity, including the organization of labor and the conceptualization of end

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

7 of 20 01/27/2014 03:46 PM

use. We can see this in Crutzen and Kotkamp’s more recent, concise, and useful

definition of software engineering: “The goal of software engineering is to produce

unambiguous software that masters complexity. Based on the principles of controlling

complexity and the reducing ambiguity within software, software engineers try to tame

the complexity and ambiguity of the real world.”57 Thus, the metaphor of “engineering”

provides us with some key starting points for analysis: hierarchies (both in layers of

abstraction in software and in the organization of labor), the relationship between

hardware and software, and the inside/outside dichotomy of producers and consumers.

And yet, we cannot simply take the engineers at their word. Heterogeneity enters into our

analysis when we consider how every element the engineer works on or around may also

work in reverse upon the engineer, or when unexpected elements disturb the carefully

built associations. One is reminded of the first computer bug, the moth Grace Hopper

pulled out of the Harvard Mark II. Moths short-circuiting relays are only the most salient

elements in a heterogeneous and often unpredictable stew comprised of electrical

currents, humidity, dust, electrons, temperature,58 metals and plastics, chipsets,

assemblers, programming languages, programmers, garages, converted wool mills, state

tax incentives, universities, textbooks, lines of codes, documentation, global supply

chains, endless loops, interpreters, California hippies, emulators, MIT hackers,

managers, divorce lawyers and psychiatric wards,59 Irish entrepreneurs, New York

investors, Indian tech workers, end users, Chinese Shanzai copycats, licenses, and

hardware configurations. Software’s relationship to the future and its surprising obduracy

also can undermine the engineer’s efforts at association; the Y2K Bug panic occurred

because software systems lasted long enough that it mattered that variables for years

were encoded in two decimal digits and not four. The history of software is replete with

elements such as these irrupting into the smooth workings of would-be master software

engineers. For all the idealism of the engineering metaphor’s ability to help tame this

complexity, the anxiety of Garmisch 1968 and software engineering in general arises

because many times software engineering simply means working on contingency,

accident, failure, and unexpected success.

Thus, it should be clear that the cohesive artifact called “software” is always under threat

of dissociation by the unruly elements of the “real world,” however well those elements

are fended off. Indeed, the history of software production is full of stories of overpromises

and underdeliveries, missed deadlines, and failures.60 IBM’s System/360 is a famous

example. ALGOL’s failure to become an international standard high-level, cross-platform

(read: not dominated by IBM) language is another. The demise of Lotus 1-2-3 points to

another dissociation, this time due to Lotus’s engineers betting on IBM’s OS/2 operating

system when Microsoft Windows was about to ascend to dominate the PC market. A

more recent example is the failure of MySpace.61 However, rather than go on listing

examples, the next section will explore in detail the heterogeneous engineering of

Microsoft’s Windows Vista and its subsequent dissociation in order to demonstrate the

use of heterogeneous engineering as a mode of critical and normative inquiry for

software studies.

3. Windows Vista

Windows XP was a massive success for Microsoft, and its successor, “Windows Vista,”

was highly anticipated. However, today many consider Vista to be a failed software

system. How was it dissociated? Since Vista is a complex system, there are many areas

to explore: securing (and securitizing) the operating system with User Access Control,

Digital Rights Management, attempting to limit pirated distribution of Vista, “Trusted

Computing,” and limiting third-party access to the kernel via signed driver files; the

advent of 64-bit processing; Microsoft’s run-ins with U.S. and E.U. anti-trust regulators;

the dominance of Windows and Microsoft in gaming; Vista’s relationship to Mac OSX,

Linux, and the emerging cloud-based software of companies like Google; or (importantly)

the day-to-day life of wage workers at Microsoft as they worked long hours to code and

debug Vista. Here we will explore one case: the heterogeneous engineering of the

graphical interface, Aero, the production of the “Vista Experience,” and how it was

bifurcated to appease part of Microsoft’s network, Original Equipment Manufacturers

(OEMs) and Intel, to the detriment of another, end users.

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

8 of 20 01/27/2014 03:46 PM

Engineering Aero and the “Vista Experience”

<ILLUSTRATION 3: Vista's "Flip" navigation in action. Source: http://www.microsoft.com/presspass/presskits/windowsvista/images/Windows-Flip3D.jpg>

A large collection of heterogeneous bits and pieces went into construction of the

discursive and technical system referred to as the “Vista Experience.” Over the period of

time when Vista was produced (roughly 2003 to late 2006), Microsoft management

worked to associate external elements such as processor manufacturers (notably Intel),

“original equipment manufacturers” (OEMs, notably Dell, Hewlett-Packard, Sony, and

Gateway), hardware manufacturers (makers of scanners, cameras, printers, and other

peripherals), chip makers (Intel, AMD), retailers (Best Buy, Dell), and an object

alternately called The Customer, The Masses, and The Consumer.62 Moreover, Microsoft

itself had to associate its own internal elements (2,400 developers, 2,500 testers, and

1,500 program managers,63 marketers, accountants, internal computer systems) to align

with this external network.

This complex process was aimed at producing a software system repeatedly referred to

as the “Vista Experience.” Given that windows-based graphical interfaces are the

established surfaces with which users interact with their machines, the “Vista Experience”

first appears to be a new graphical system, Windows Aero.64 Although it is the highest

layer of abstraction in a personal computer (and thus it is only one small part of the

computer system), for most users, the graphical interface is the computer. When fully

utilized, Aero provides 3-dimensional “flip” navigation through open windows,

semi-transparent window decorations, previews of open programs, and sleek menus. To

see how users react to such “eye candy,” simply search YouTube for videos of Windows

Aero.65 This emphasis on images, visual culture, and graphics (“windows,” “vista,” etc.) is

a longstanding one for Microsoft, starting with the grandiose launch of Windows 95 to a

Vista marketing stunt in which aerial dancers formed the Windows logo on the side of a

building in New York.66

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

9 of 20 01/27/2014 03:46 PM

However, we cannot remain at the surface, at the visual sign. We have to see Microsoft’s

Aero as an attempt to associate multiple heterogeneous elements: new (and anticipated)

processors and graphics cards that could render 3D images; wide aspect ratio

high-density LCD monitors; users who are attracted to OSes with “eye candy” (i.e., Mac

OSX, Linux with compositing); previous Windows users who are fans of Microsoft’s

software; computer industry critics who look for new technologies to write about in

magazines and on blogs; the visual signs of market share, as well as shareholder

perception of the firm; retailers in need of new commodities to sell; and the larger image-

conscious visual culture of marketing and postmodern computing.

This association of hardware and software was aimed towards creating a Vista

Experience that is emotional; as Microsoft critic Paul Thurrott notes, “Like its

predecessors, Windows Vista is ultimately just a tool, of course, but it’s one that provides

you with an emotional relationship that you just didn’t get from Windows XP. Those new

qualities extend from the packaging of the system, to the new system sounds, to the new

visual capabilities and glass-like icons, to the subtle animations, and other features.”67

The “Vista Experience” thus becomes a central, organizing mythology for all of these

elements to be arranged around. Thus, the engineering of the Vista experience is the

engineering of affect and technology, graphics and hardware, screens and machine-level

events. For example, early in the production process (in 2003), Will Poole, who was a

Microsoft Senior Vice President during the Vista development, described the emphasis

on “immersive” graphics as a reaction to the visual and technological experiences offered

by video games.68

However, despite the emphasis on Aero and technical engineering of emotional graphics,

Microsoft could not demonstrate this graphical “Vista Experience” too early; in fact, it had

to hold it in abeyance. It did so because two vital parts of its associated network, OEMs

and retailers, did not want sagging sales of computers with Windows XP in the months

prior to the release of Vista in January 2007. Their collective theory was, if consumers

saw Vista and knew it was coming in the next year or so, they would hold off buying

computers until the new OS was released.69 Thus, although Microsoft was intently

building the Vista software system and touting its graphical innovations at trade shows

and to tech reporters, it faced a threat of dissociation from OEMs and retailers: if

Microsoft undermined OEM and retail sales by promoting Vista too soon, Microsoft would

run the risk of losing influence with those elements of the network. Retailers are a special

concern, because the larger ones (such as Best Buy) already sell Apple products and

could increase their emphasis on Apple at the expense of Microsoft. And of course,

Microsoft itself would be hurt by slow sales of Windows XP-loaded computers, and

another element in its network, shareholders, would threaten the overall system.

Complicating the surveillance of the OEM and retail networks, Microsoft had to maintain

association with another heterogeneous element: Intel. While OEMs such as HP and

Sony make computers, they don’t make the required microprocessors. Intel’s dominance

here requires both software and hardware firms to associate new chipsets into their

architectures, as well as maintaining sales of older chipsets. In the case of Vista, the

early (2005) requirements of the Aero graphical interface (the Windows Display Driver

Model) were high70 – so much so that the vast majority of chipsets on the market,

including Intel’s 915, could not meet them. At that time, Intel was introducing the 945

chipset, which could provide the power to run Vista Aero.71 However, Intel would not be

ready with the massive production of the 945 in time for the launch of Vista (then

scheduled for 2006, eventually pushed back to 2007); additionally, the 945 was

significantly more expensive than the 915.72 Instead, the bulk of their production was still

tied to the older 915 set. Since the 915 was not capable of meeting the Aero

specifications and thus producing the “Vista Experience” Microsoft intended,73 Microsoft

management would have to choose: continue with the high requirements for the

graphical “Vista Experience” or somehow dilute it to enable Intel – an important part of

Microsoft’s network – to sell its stock of older 915s; associate an uncertain (and yet, as

always in computational culture, a better and faster) future, or retain a strong link with a

past element that enabled Microsoft to be the giant corporation it was.

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

10 of 20 01/27/2014 03:46 PM

ILLUSTRATION 4: The "Windows Vista Capable" sticker affixed to machines

carrying XP which were (to be) incapable of running Vista with Aero. Source:

http://www.richardbyrom.com/images/uploads

/WindowsVistaUltimatefortheTabletPC_1F92/windowsvistacapable20.jpg/

ILLUSTRATION 5: The "Certified" sticker, indicating the

machine could be upgraded to one of the "Premium"

Vista versions and thus run the full "Vista Experience."

Source: http://www.dotnetsolutions.com.au/images

/Cert-Win_Vista_rgb.png>

In order to maintain their associations with retailers, OEMs, and Intel, Microsoft

management shifted the “Vista Experience” from its on-screen, on-computer, graphical

and emotional phenomenon to two non-software, non-hardware phenomena: a sticker

and a sales pitch.

The sticker was an attempt to maintain sales of computers with Windows XP ahead of

the launch of Vista. Rather than publicly tout Vista’s capabilities, Microsoft management

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

11 of 20 01/27/2014 03:46 PM

decided to affix stickers to computers that proclaimed the computers were “future-proof”;

that is, that they could upgrade to Vista when it was released. Retail sales associates

were trained to sell XP computers based on a future promise of an unseen, unknowable,

and yet attainable “Vista Experience.” This was intended to aid Microsoft’s networks of

OEM and retailers, who could maintain sales even as the future Vista loomed.

However, the most significant change to the future “Vista Experience” arose due to Intel’s

desire to sell more 915 chipsets. To maintain the association with Intel, Microsoft

marketing decided on two levels, signified by two different stickers: Windows Vista

Capable and Certified for Windows Vista (see illustrations 4 and 5). Computers marked

with the “Vista Capable” logo would not have the graphics power to run Aero; the version

of Vista here is “Vista Home Basic.” In most cases, this meant the computer had an Intel

915 chipset. The experience anyone with a “Vista Capable” 915 machine would have is

not, then, the idealized “Vista Experience” described above: 3D graphics, flip navigation,

transparencies, and the like. But rather than admit this is not an “experience,” Microsoft

marketers referred to day-to-day use of Vista Basic as the “core experience” of Vista.

This includes “Parental Controls, Windows Photo Gallery, Windows Defender, and Instant

Search.”74 The “Certified for Windows Vista” logo was affixed to computers that met the

original Aero requirements – typically Intel 945 machines with Vista Home Premium,

Vista Business, Vista Enterprise, or Vista Ultimate editions. With this bifurcation of

“experience,” Microsoft was able to associate Intel’s 915 chipset into its network, thus

allowing Intel and OEMs to sell more of their older hardware.75

This bifurcation between the (premium) “Vista Experience” and the (non-premium) “Core

Experience” points to a familiar quandary in modern graphics-based software production:

the use of abstractions to hide lower levels of the machine.76 The highest level of

abstraction in an OS is the graphical interface. Typically, if this layer is complex, it

demands much more of the underlying software (especially drivers) and hardware. To

purchase a computer capable of running Aero and 3D graphics before the Vista release

in 2007, a user had to be familiar with the inner workings of computers, especially the

graphics card, the processor, the amount of RAM, and so on. Paradoxically, however, the

glossier and smoother this OS layer is, the more “user friendly” the machine appears.

From the earliest days of the GUI – and here we’re thinking of Macintoshes especially – a

consumer’s expectation is that a computer would “just work”; that is, the user would not

need knowledge of the inner workings of the machine, and would instead simply use

GUIs to manipulate the machine.77 Thus the GUI – the surface – often stands in for and

elides the material machine beneath it.78

Thus, when Aero is demonstrated or discussed, the underlying assumption is that this

glossy surface and 3D navigation is in fact Windows Vista. And herein lies a major

problem in Microsoft’s production of the “Vista Experience” out of heterogeneity. If Aero is

Vista, to be “Vista Capable” seems to mean “Aero Capable.” Aero’s future-deferred and

(possibly, depending on the chipset) technologically-prevented visual and aesthetic

promises haunted constructions of Vista before its release. At that time, the

heterogeneous elements comprising Vista oscillated and mutated depending on context.

For a shop-floor sales clerk to explain to “the consumer” what “Aero,” “Parental Controls,”

“Windows Defender,” and sundry other details mean – all ahead of the Vista launch and

without a Vista-loaded computer – was a difficult matter of configuring a system

comprised of promises that oscillate between the ideal and the material, between

Microsoft’s successful past and its presumably successful future, between subtle

conceptions of “premium” graphics and “capable” graphics, and between a computer in

the store with the known OS (XP) and the next-generation OS. For “the consumer,” Vista-

in-the-future was an OS capable of improving in largely unknown ways upon the material

machine they were purchasing at that moment (the machine loaded with XP). The

consumer’s screen, keyboard, mouse, and peripherals would (presumably? hopefully?)

alter, extend, and improve their capabilities with a new OS. In this sense, “future-proof”

did not meant that a computer purchased today would work tomorrow; future-proof

means that the computer has to deliver the better tomorrow always promised (and

endlessly deferred) in consumption-based capitalism. And, after the Vista release, retail

salespeople had to explain to disgruntled consumers why some computers didn’t run

Aero, which was, after all, supposed to be “The Vista Experience” all along. Thus, the

material machine asserted itself in myriad ways, depending upon its configuration,

altering the promised relationships between Microsoft, retailer, consumer, hardware,

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

12 of 20 01/27/2014 03:46 PM

peripherals, software, and the future. This confusion would emerge as a major

dissociating force of Vista, a point we will return to later.

Rajesh Srinivasan as Heterogeneous Engineer

So far, this is a high-level view of the heterogeneous engineering of Vista. Here, we want

to focus on one Microsoft heterogeneous engineer in particular, Rajesh Srinivasan, who

was instrumental in maintaining the associations between Microsoft and OEMs.

Srinivasan, a Senior Manager at Microsoft since 2004 who has degrees in engineering

and management, is positioned high in the management hierarchy, answering to

vice-presidents (such as Mike Sievert and former VP Will Poole), the Chief Technical

Officer Ray Ozzie, co-President Jim Allchin, and the CEO Steve Ballmer. Based on

internal Microsoft emails (made public by court order in Kelley v. Microsoft), we can show

how Srinivasan negotiated with heterogeneous elements in order to build and maintain

the Vista heterogeneous network.

First, because Intel’s 945 chipset was more expensive and available in smaller quantities,

Srinivasan had to contrast the idealized Vista Aero experience with the day-to-day reality

of OEMs, retailers, and Intel. In a key August 2005 email thread to Keith Eagen and Mike

Croft, Srinivasan argued for a two-tiered approach to producing Vista:

“Although a single tier program positions things as binary – PC is either

Ready or Not… By using a two tier approach, We [sic] can still launch

the program in Jan 06 at CES and maximize our up-sell opportunity. By

letting OEMs know now, we have a small chance of influencing their

product plans for Spring and definitely for Summer. We are not relaxing

any criteria [in terms of graphics] that impacts user experience on PCs

that are labeled Ready. And we avoid customer dissatisfaction.

Although this sounds like a win-win, we would definitely have some

strong OEM push back, and would need your support and the OEM

division’s support to get OEM buy-in. And we would have to seek Best

Buy’s help to convince with [sic] their OEMs (HP, Gateway, Toshiba,

Sony), which they have tentatively offered today.79

Here, Srinivasan attempts to negotiate the needs of OEMs and retailers such as Best

Buy with Microsoft’s need to “maximize our up-sell opportunity.” He argues that the early

negotiation of the two-tiered plan may also influence what OEMs produce. He also

weighs the full Aero experience (“We are not relaxing any criteria that impacts user

experience”) against the need to sell more computers now, and the need to sell more

computers now against “customer dissatisfaction.” Finally, anticipating “strong OEM

pushback,” he asks higher-level Microsoft management and Best Buy for help in

convincing OEMs to adopt the two-tiered plan.

Although this sounds as if Srinivasan is “caving to Intel” (as another Microsoft employee

puts it80) because the two tiers would center on the 945 and the 915, he sees the

two-tiered approach as a chance to use OEMs to discipline the lagging Intel: “This is

more about not letting OEMs lock in their product plans fully on 915, then [sic] letting Intel

game us.”81 He argued for delaying Vista enough to “use that as leverage with OEMs to

put pressure on Intel to end of life 915 by Oct 06, that is a big win for us.”82 Moreover,

Srinivasan makes one last push to save the full “Vista Experience” and to remove Intel’s

915 from the network: “Brad [Goldberg] and Shanen [Boettcher] now agree that single

tier, Vista Optimized in May/June [of 2006] is optimum. Hopefully with their support and

OEM div support, we can convince [VP Mike Sievert] and then [VP] Will Poole.”

Of course, this single-tiered plan failed, and the 915 worked its way into the network.

However, Srinivasan again worked to maintain (as well as he could) the “Vista

Experience” by denying the inclusion of an even older Intel chipset, the 865, as “Vista

Capable.” In early 2006, Rick Nolte emailed him, noting after Vista dropped the standard

for “Capable”, they got “slammed from numerous customers in virtually every geography

telling us that MSFT has communicated that Intel 865 based platforms qualify for the

Vista Capable PC program.”83 The email exchanges that follow indicate the ambiguity of

this situation – no one could answer definitively that the 865 would not qualify for Vista.

Srinivasan fought against this backwards-expansion, arguing that, while it would help

Intel sell more chips, it would lead to “customer dissat” with the Vista Experience.

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

13 of 20 01/27/2014 03:46 PM

Similarly, in early 2006, Srinivasan had another – decidedly less technical – management

challenge when he learned that the OEM Sony wanted to go into retailers and remove

old “Designed for Windows XP” stickers and replace them. Sony wanted to do so

because “apparently retailers, esp Circuit City and CompUSA are telling OEMs that on

April 1 [2006] systems not logo’d Capable would get marked down or returned.”84 That

is, any computer without one of the new stickers would be discounted heavily, and Sony

was afraid they would lose $20 million.85 However, allowing an OEM to replace stickers

brought up a sticky issue: Microsoft’s stickers use a strong adhesive, and Srinivisan and

his colleagues were concerned that the OEMs would do a poor job of cleanly replacing

them.86 Moreover, they were concerned that the OEMs would mistakenly label

computers “Certified for Vista” when they were merely “Vista Capable,” thus putting

stickers on the wrong potential experience.87 To allay Sony’s concerns, Srinivisan

decided to deploy another sign, a “retail fact tag,” saying the computers in question would

in fact run Vista despite their “Designed for Windows” stickers.

However, despite Srinivasan’s efforts at associating OEMs, myriad hardware

configurations, retailers, signage, stickers, Intel, other Microsoft employees (marketers,

vice-presidents, managers, and engineers), Vista is largely considered to be another

failed software product in the long history of software mishaps. The heterogeneity of the

“Vista Experience” proved to be too difficult for him or others at Microsoft to tame. The

deferred future of slick graphics rendered quickly on the screen oscillated with the

existing hardware configurations produced by OEMs and Intel. In the end, as we will

explore next, it was the user who bucked the proposed network of associations.

4. Conclusion: Vista’s dissociation, and implications for Software Studies

It is tempting for cultural critique to interpret materiality based solely in political economic

conditions (i.e., capitalism, racism, or globalization). Likewise, critiques of software often

treat it as an immaterial good, and thus as a discourse to unpack or a set of lines of code

to parse.88 Making materiality and immateriality meet – or better yet, resisting such

reductions – is a stated goal of software studies. For example, Mackenzie warns against

research which “implicitly pre-fabricates [software] objects as social or cultural” and

challenges scholars to “[revisit] concepts of social, cultural, and technological.”89 We

believe an approach based on heterogeneous engineering can avoid this

material/immaterial dichotomy, because heterogeneous engineering requires inquiry to

begin within the network, identifying nodes of producer, product, process, and use,

tracing flows of influence and determination, all the while being agnostic as to any one

heterogeneous object’s materiality or immateriality, biology or technicity.90 But despite

the emphasis on networks, the heterogeneous engineering approach seeks to avoid the

“hegemony of network flows”91 and pre-defined network roles by making the

articulations92 and associations between nodes the subject of investigation. In order to

identify the sociality of software,93 critical scholars must go beyond the dialectical

interaction of economic base and cultural superstructure and instead explore the “uneven

configuration of different levels of production”94 by providing diagrammatic accounts of

association and dissociation. After all, digital objects are the product of dynamic,

cumulative, and disruptive processes of interpretation, reiteration, citation, and death.

Heterogeneous engineering provides a conjuncture for investigation as a “spatio-

temporal articulation of different apparatuses forming a diagram of power.”95

This can be made clear by a final consideration of the “Vista Experience,” specifically

how it can be conceived of as a failed heterogeneous network of associations. As early

as August 2005, in an email to Srinivasan, Mark Croft noted that “it TOUGH [sic] to

educate consumers” on the two-tiered “Capable and Premium” software plan.96 He

turned out to be right. Despite their repeated warnings about “customer dissat,” by

working to associate OEMs, Intel, and retailers such as Best Buy, Srinivasan and the

heterogeneous engineers at Microsoft gave less attention to the end user of the system.

This was despite repeated cries from a few Microsoft employees on behalf of the

“average consumers.” The exemplar is Brad Goldberg’s email from November 2005:

Customers may not have any context from phrases like ‘Aero Glass or

Windows Defender or Sideshow’ … The average consumer would not

know whether (s)he needs Aero-Glass or Windows Defender or not.

Retail sales person [sic] cannot explain what Aero Glass is or what it

will do for them four – six months prior to Vista launch. … It takes us

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

14 of 20 01/27/2014 03:46 PM

incredibly long time [sic] to explain to OEMs the benefits and value

prop[osition] of each feature/scenario. How can we communicate this to

an end-user in a document, when vast majority of customers can’t

understand what an OS does for them?…Trying to ‘educate’ customers

about features of an OS that is not available may well confuse them

and may cause them to delay their purchase – the exact opposite of

what we want to see. Less than 5% of customers typically upgrade OS.

Let’s not confuse the masses for the sake of providing clarity to

‘enthusiasts.’97

And Jim Hebert frankly quipped, “Vista Capable is an XP program – not a Vista

program,”98 thus noting that the end-user wasn’t the concern; rather, maintaining sales of

XP was.

These internal emails are available because consumers brought a class-action lawsuit

against Microsoft in 2007, alleging that the “Vista Capable” program was intended to

inflate the prices of older, XP-loaded machines. Beyond this legal challenge, when Vista

was finally released, there was much “customer dissat”: InfoWorld started a “Save XP”

petition to extend the life of the popular OS because so many users did not like Vista.[93

Gruman, “The Campaign to Save Windows XP."] Microsoft in fact did extend XP’s service

life for several months in 2008, allowed consumers “downgrade rights” from Vista to XP

until 2009, and allowed manufacturers to load it on netbooks (as of this writing, one could

still purchase an XP Service Pack 3 netbook new from Amazon). XP remains the number

one OS in the world, even ahead of Windows 7.99 Despite proclamations from Microsoft

that Vista was a success,100 the “Vista Experience” was ultimately dissociated, because

it failed to associate users into the actor-network. Returning to Star’s warning,101 the

user was meant to be a disciplined outcast in the Microsoft network, happily using

whatever OS Microsoft and retailers sold, but thanks to other networks (i.e., America’s

trigger-happy litigious culture and its cultural emphasis on consumer rights as democratic

rights), the users reasserted themselves.102

This dissociation – this unmasking103 of the normally neat, self-contained software

abstraction known as Microsoft Windows – alerts us to the highly contingent nature of

software, something that the participants in the 1968 NATO Garmisch conference

recognized as they debated and ultimately took up the engineering metaphor. Software’s

complexity requires software studies to draw on the very metaphors used by its

producers, as well as to seek out heteroclites and oscillations within and beyond those

metaphors. Thus we feel that this theory of heterogeneous (software) engineering can be

useful to the field. Indeed, considering the arguments in Software Studies: A Lexicon and

in Bogost and Montford’s platform studies,104 we are not alone in critically thinking about

engineering. As Goffey argues, “Locating itself squarely on the side of the reductionist

strategies of the exact sciences, society, culture, and politics are very much marginal to

the concerns of computing science. Software engineering, on the other hand, concerned

as it is with the pragmatic efficacy of building software for particular purposes, might

appear to offer a better starting point for factoring culture back into software.”105 We

agree, and we hope the theory of heterogeneous software engineering can further this

line of analysis.

Finally, on a normative note, we return to Fuller’s challenge for us to undermine software

oligopolies with critique and praxis.106 For those of us concerned about the dominance of

Microsoft, Apple, Facebook, Cisco, IBM, or Google in our daily lives and indeed in our

code/spaces,107 heterogeneous software engineering can illuminate avenues of

resistance. It is true that in the case of Vista, especially in the limited sense we offer here,

the major disruption came from end-users, and so we might conclude by noting that

consumer advocacy and “consumer rights” will be the most effective way to resist the

hegemony of these corporations.108 However, end-users may not have had this

opportunity if there wasn’t a rupture in Microsoft’s network due to Intel’s 915 chipset.

Moreover, consumer sovereignty is not the only way to resist software oligopolies. Our

analysis reveals that public regulation of these companies, particularly in terms of their

near-collusive relationships with oligopolistic hardware manufacturers (in this case, as

between Microsoft and Intel), may be effective. Of course, free and open source software

(FOSS) challenges this hegemony, but our analysis reminds makers of FOSS that such

software must associate end-users, who have been enculturated in a world of graphical

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

15 of 20 01/27/2014 03:46 PM

abstractions and an ideology of user-friendliness; end-users don’t often like to hear

“RTFM.” Or, more radically, if FOSS software alternatives are somewhat effective,

perhaps coupling them with free and open source hardware production and distribution –

maybe starting in some universities or in worker-owned cooperatives – would help

dissociate oligopolies. All the while, of course, these objects must be designed for use

and for users, computer literate or otherwise. For anyone exploring alternatives, the

heterogeneous software engineering method may be useful in theorizing or building the

complex, contingent networks that must be navigated in order to meet the challenges laid

down by the fundamental works of software studies.

Bibliography

Bird, C., B. Murphy, N. Nagappan, and T. Zimmermann. “Empirical Software Engineering

at Microsoft Research.” In Proceedings of the ACM 2011 Conference on Computer

Supported Cooperative Work, 143–150, 2011.

Boehm, B. “A View of 20th and 21st Century Software Engineering.” In Proceedings of

the 28th International Conference on Software Engineering, 12–29, 2006.

Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engineering,

Anniversary Edition. 2nd ed. Addison-Wesley Professional, 1995.

Callon, M., and B. Latour. “Unscrewing the Big Leviathan: How Actors Macrostructure

Reality and How Sociologists Help Them to Do So.” In Advances in Social Theory and

Methodology Toward an Integration of Micro and Macro Sociologies, 277–303, 1981.

Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog : a History of

the Software Industry. 1st MIT Press pbk. ed. Cambridge Mass.: MIT Press, 2004.

Crutzen, Cecile, and Erna Kotkamp. “Object Orientation.” In Software studies: a lexicon,

edited by Matthew Fuller, 200–207. Cambridge, Mass.: MIT Press, 2008.

Cusumano, Michael A. Microsoft Secrets: How the World’s Most Powerful Software

Company Creates Technology, Shapes Markets and Manages People. 1st Touchstone

Ed. Free Press, 1998.

———. “What Road Ahead for Microsoft the Company?” Communications of the ACM

50, no. 2 (February 1, 2007): 15.

Davis, Michael. “Will Software Engineering Ever Be Engineering?” Communications of

the ACM 54, no. 11 (November 1, 2011): 32–34.

DeJean, David. “Are You Ready For Vista Graphics?” Magazine. Information Week,

November 1, 2006. http://www.informationweek.com

/news/193500969?printer_friendly=this-page.

DeLuca, K. “Articulation Theory: A Discursive Grounding for Rhetorical Practice.”

Philosophy & Rhetoric 32, no. 4 (1999): 334–348.

Fuller, Matthew. Behind the blip : essays on the culture of software. Brooklyn, NY, USA:

Autonomedia, 2003.

———. Software studies: a lexicon. Cambridge, Mass.: MIT Press, 2008.

Gehl, Robert W. “Real (software) Abstractions: On the Rise of Facebook and the Fall of

Myspace.” Social Text 30, no. 2 111 (2012): 99–119.

Goffey, Andrew. “Algorithm.” In Software studies: a lexicon, edited by Matthew Fuller,

15–20. Cambridge, Mass.: MIT Press, 2008.

“Graphics — Windows Vista Support FAQ.” Intel, November 2, 2006. http://www.intel.com

/support/graphics/sb/CS-023606.htm.

Greene, Ronald W. “Rhetorical Materialism: The Rhetorical Subject and the General

Intellect.” In Rhetoric, Materiality, and Politics, edited by Barbara Biesecker and John

Louis Lucaites, 43–65. New York: Peter Lang, 2009.

Gruman, Galen. “The Campaign to Save Windows XP.” Magazine. InfoWorld, October 3,

2008. http://www.infoworld.com/save-xp.

Guth, Robert. “Battling Google, Microsoft Changes How It Builds Software.” Wall Street

Journal, September 23, 2005, sec. Leader (u.s.). http://online.wsj.com/article

/0,,SB112743680328349448,00.html.

Hall, Stuart. “Cultural Studies: Two Paradigms.” Media, Culture, and Society 2, no. 1

(1980).

Hayes, B. “Computing Science: Reverse Engineering.” American Scientist 94, no. 2

(2006): 107–111.

Hetherington, Keith. “From Blindness to Blindness: Museums, Heterogeneity and the

Subject.” In Actor Network Theory and After, edited by John Law and John Hassard, 51 –

73. Oxford [England] ;;Malden MA: Blackwell/Sociological Review, 1999.

Hruska, Joel. “$1.5 Billion Microsoft Vista-Capable Booty Hardly Ill-gotten.” Blog. Ars

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

16 of 20 01/27/2014 03:46 PM

Technica, 2009. http://arstechnica.com/hardware/news/2009/01/1-5-billion-microsoft-

vista-capable-booty-hardly-ill-gotten.ars.

———. “The Vista Capable Mess: Intel Pushes, Microsoft Bends.” Blog. Ars Technica,

2009. http://arstechnica.com/hardware/news/2008/03/the-vista-capable-debacle-intel-

pushes-microsoft-bends.ars

Kelley V. Microsoft Corporation, FRD 544 US Dist. 1 (2009).

Kelley V. Microsoft Corporation, FRD 544 US Dist. 1 (2009).

Kirschenbaum, Matthew G. Mechanisms: New Media and the Forensic Imagination. The

MIT Press, 2012.

Kirschenbaum, Matthew. “Virtuality and VRML: Software Studies After Manovich”, 2003.

http://www.electronicbookreview.com/thread/technocapitalism/morememory.

Kitchin, Rob, and Martin Dodge. Code/space: Software and Everyday Life. Cambridge,

MA: MIT Press, 2011.

Krige, J. “The 1984 Nobel Physics Prize for Heterogeneous Engineering.” Minerva 39,

no. 4 (2001): 425–443.

Laclau, Ernesto, and Chantal Mouffe. Hegemony and Socialist Strategy: Towards a

Radical Democratic Politics. London: Verso, 2001.

Lai, Eric. “Microsoft: Vista’s Momentum Will ‘Accrue’ for Windows 7.” InfoWorld, May 29,

2009. http://www.infoworld.com/d/windows/microsoft-vistas-momentum-will-accrue-

windows-7-249.

Lash, Scott M. Critique of Information. 1st ed. Sage Publications Ltd, 2002.

Latour, Bruno. Reassembling the Social : an Introduction to Actor-network-theory.

Oxford ;New York: Oxford University Press, 2005.

Law, John. “Notes on the Theory of the Actor-network: Ordering, Strategy, and

Heterogeneity.” Systemic Practice and Action Research 5, no. 4 (August 1992): 379–393.

———. “Technology and Heterogeneous Engineering: The Case of Portuguese

Expansion.” In The Social Construction of Technological Systems: New Directions in the

Sociology and History of Technology, edited by Wiebe Bijker, Thomas Parke Hughes,

and Trevor Pinch, 111–134. Cambridge Mass.: MIT Press, 1989.

Mackenzie, Adrian. Cutting Code: Software and Sociality. New York: Peter Lang, 2006.

Mahoney, Michael Sean. Histories of Computing. Edited by Thomas Haigh. Harvard

University Press, 2011.

Mahoney, M.S. “Finding a History for Software Engineering.” Annals of the History of

Computing, IEEE 26, no. 1 (2004): 8–19.

Manovich, Lev. Software Takes Command, 2008.

Microsoft Windows Vista Launch Human Billboard, 2007. http://www.youtube.com

/watch?v=B7yRQUzhM2A&feature=youtube_gdata_player.

Montfort, Nick, and Ian Bogost. Racing the Beam: The Atari Video Computer System.

The MIT Press, 2009.

Moody, Fred. I Sing the Body Electronic: a Year with Microsoft on the Multimedia Frontier.

New York: Penguin Books, 1995.

Naur, P., and B. Randell. “Software Engineering: Report of a Conference Sponsored by

the NATO Science Committee, Garmisch, Germany, 7th to 11th October, 1968”, 1969.

Schaefer, Peter D., and Meenakshi Gigi Durham. “On the Social Implications of

Invisibility: The iMac G5 and the Effacement of the Technological Object.” Critical Studies

in Media Communication 24, no. 1 (March 2007): 39–56.

Star, Susan Leigh. “Power, Technology and the Phenomenology of Conventions: On

Being Allergic to Onions.” In A Sociology of Monsters : Essays on Power, Technology and

Domination, edited by John Law, 26 – 56. 1. publ. London u.a.: Routledge, 1991.

Thurrott, Paul. “The Road to Windows Longhorn 2003.” Blog. Paul Thurrott’s Supersite

for Windows, August 19, 2003. http://www.winsupersite.com/article/product-review

/the-road-to-windows-longhorn-2003.

———. “Windows Vista Review, Part 4: The Vista Experience.” Blog. Paul Thurrott’s

Supersite for Windows, October 6, 2010. http://www.winsupersite.com/article/product-

review/windows-vista-review-part-4-the-vista-experience.

Tomayko, J. E. “Software as Engineering.” In Proceedings of the International

Conference on History of Computing: Software Issues, 65–76, 2000.

Turkle, Sherry. Alone Together : Why We Expect More from Technology and Less from

Each Other. New York: Basic Books, 2011.

———. Life on the Screen : Identity in the Age of the Internet. New York: Simon &

Schuster, 1995.

Wardrip-Fruin, Noah. Expressive Processing: Digital Fictions, Computer Games, and

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

17 of 20 01/27/2014 03:46 PM

Software Studies. The MIT Press, 2012.

Whitney, Lance. “XP Still Top OS, but Windows 7 Hot on Its Trail.” CNET, January 3,

2012. http://news.cnet.com/8301-10805_3-57351192-75/xp-still-top-os-but-windows-

7-hot-on-its-trail/.

Windows Vista: Aero Flip 3D! [HD], 2009. http://www.youtube.com

/watch?v=IuQC4pey0v4&feature=youtube_gdata_player/.

“Windows Vista Rules for Enabling Windows Aero With Guidelines for Troubleshooting”,

April 13, 2009. http://msdn.microsoft.com/en-us/windows/hardware/gg487313.aspx.

Woolgar, Steve. “Configuring the User: The Case of Usability Trials.” In A Sociology of

Monsters : Essays on Power, Technology and Domination, edited by John Law, 57 – 99.

London u.a.: Routledge, 1991.

Zachary, G. Show-stopper! : the Breakneck Race to Create Windows NT and the Next

Generation at Microsoft. New York: Free Press, 1994.

BIOS:

Robert W. Gehl is an assistant professor in the Department of Communication at the

University of Utah. He has published critiques of the architectures, aesthetics, and

political economics of YouTube, MySpace, Facebook, Twitter, and blogs in New Media

and Society, First Monday, The International Journal of Cultural Studies, Television and

New Media, Lateral, and Social Text. His first book, Reverse Engineering Social Media,

will appear in 2013 from Temple University Press.

Sarah A. Bell is a doctoral student of Communication at the University of Utah. Her

research interests are at the intersection of information use, software design, and human

values.

License:

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

https://creativecommons.org/licenses/by-nc-sa/3.0/

References

Wardrip-Fruin, Expressive Processing, ix. (up)1.

Wardrip-Fruin, Expressive Processing. (up)2.

Kirschenbaum, Mechanisms. (up)3.

Manovich, Software Takes Command. (up)4.

Kirschenbaum, Mechanisms, ix. (up)5.

Fuller, Behind the Blip, 11. (up)6.

Kirschenbaum, Mechanisms, xii. (up)7.

Turkle, Alone Together, 312, note 17. (up)8.

Kirschenbaum, “Virtuality and VRML: Software Studies After Manovich.” (up)9.

Ibid. (up)10.

Ibid. (up)11.

Ibid.; See also Kitchin and Dodge, Code/Space: Software and Everyday Life, 24.

(up)

12.

Kirschenbaum, “Virtuality and VRML: Software Studies After Manovich.” (up)13.

Mackenzie, Cutting Code. (up)14.

Law, “Notes on the Theory of the Actor-network,” 380. (up)15.

Callon and Latour, “Unscrewing the Big Leviathan.” (up)16.

Law, “Notes on the Theory of the Actor-network,” 380. (up)17.

Law, “Technology and Heterogeneous Engineering: The Case of Portuguese

Expansion,” 111. (up)

18.

Krige, “The 1984 Nobel Physics Prize for Heterogeneous Engineering,” 426. (up)19.

Law, “Technology and Heterogeneous Engineering: The Case of Portuguese

Expansion,” 112. (up)

20.

As Law does in Law, “Technology and Heterogeneous Engineering: The Case of

Portuguese Expansion.” (up)

21.

Ibid., 114. (up)22.

Latour, Reassembling the Social, 8, emphasis in the original. (up)23.

Mackenzie, Cutting Code, 18. (up)24.

Law, “Notes on the Theory of the Actor-network,” 384. (up)25.

Krige, “The 1984 Nobel Physics Prize for Heterogeneous Engineering,” 426. (up)26.

Law, “Notes on the Theory of the Actor-network.” (up)27.

Star, “Power, Technology and the Phenomenology of Conventions: On Being

Allergic to Onions,” 29. (up)

28.

Hetherington, “From Blindness to Blindness: Museums, Heterogeneity and the

Subject.” (up)

29.

Latour, Reassembling the Social, 11. (up)30.

Mahoney, Histories of Computing, 88. (up)31.

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

18 of 20 01/27/2014 03:46 PM

Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 94. (up)32.

Naur and Randell, “Software Engineering” Please note that we are following the

pagination used in the orginal report, not that used in the PDF available online.

(up)

33.

Ibid., 13. (up)34.

See Davis, “Will Software Engineering Ever Be Engineering?,” 32–34. (up)35.

Qtd. in Naur and Randell, “Software Engineering,” 17. (up)36.

Qtd. in ibid., 24. (up)37.

Qtd. in ibid., 38. (up)38.

Qtd. in ibid., 138. (up)39.

Indeed, refer to the charts on pages 21, 22, and 26-30 of Naur and Randell,

“Software Engineering” to see early stages of dividing up the labor of software

production and managing workers’ time and costs. (up)

40.

Qtd. in ibid., 17. (up)41.

For example, see Brooks, The Mythical Man-Month; Mahoney, “Finding a History

for Software Engineering.” (up)

42.

Qtd. in Naur and Randell, “Software Engineering,” 138. (up)43.

See Opler, qtd. in ibid., 124. (up)44.

Paul, qtd. in ibid., 40. (up)45.

Ibid., 41. (up)46.

Woolgar, “Configuring the User: The Case of Usability Trials,” 73. (up)47.

Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog; Boehm, “A

View of 20th and 21st Century Software Engineering”; Mahoney, “Finding a

History for Software Engineering”; Tomayko, “Software as Engineering.” (up)

48.

Boehm, “A View of 20th and 21st Century Software Engineering,” 16. (up)49.

See Microsoft’s Careers site: http://careers.microsoft.com/careers/en/us

/professions.aspx (up)

50.

Ibid. (up)51.

Zachary, Show-stopper! : the Breakneck Race to Create Windows NT and the

Next Generation at Microsoft; Cusumano, Microsoft Secrets; Moody, I Sing the

Body Electronic. (up)

52.

See http://research.microsoft.com/en-us/groups/rise/default.aspx (up)53.

Bird et al., “Empirical Software Engineering at Microsoft Research,” 2. (up)54.

Cusumano, “What Road Ahead for Microsoft the Company?”; Guth, “Battling

Google, Microsoft Changes How It Builds Software.” (up)

55.

Naur and Randell, “Software Engineering,” 35. (up)56.

Crutzen and Kotkamp, “Object Orientation,” 203. (up)57.

See Hayes, “Computing Science” for a discussion of electrons and temperature

in computer science. These elements affect processor speed, among other

things, thus impacting the performance of software. (up)

58.

See Moody, I Sing the Body Electronic for an account of a year with Microsoft

software developers that reveals the high personal toll exacted on employees.

(up)

59.

Kitchin and Dodge, Code/Space: Software and Everyday Life, 38. (up)60.

Gehl, “Real (software) Abstractions: On the Rise of Facebook and the Fall of

Myspace.” (up)

61.

Kelley V. Microsoft Corporation. (up)62.

See docket 93, Kelley V. Microsoft Corporation, FRD 544:2. (up)63.

See docket 131, Kelley V. Microsoft Corporation, FRD 544:82. (up)64.

For one example, go to http://www.youtube.com/watch?v=IuQC4pey0v4&

feature=youtube_gdata_player , Windows Vista. Or, search for “Windows Aero”

in YouTube for other demos. (up)

65.

See http://www.youtube.com/watch?v=B7yRQUzhM2A, Microsoft Windows Vista

Launch Human Billboard. (up)

66.

Thurrott, “Windows Vista Review, Part 4: The Vista Experience.” (up)67.

Thurrott, “The Road to Windows Longhorn 2003.” (up)68.

See docket 131, Kelley V. Microsoft Corporation, FRD 544:10. (up)69.

“Windows Vista Rules for Enabling Windows Aero With Guidelines for

Troubleshooting.” (up)

70.

“Graphics — Windows Vista Support FAQ.” (up)71.

Hruska, “The Vista Capable Mess: Intel Pushes, Microsoft Bends.” (up)72.

That is, unless the 915 was coupled with a dedicated graphics processor.

However, this was not a common occurrence, especially in laptop computers.

See http://www.intel.com/support/graphics/sb/CS-023606.htm (up)

73.

DeJean, “Are You Ready For Vista Graphics?”. (up)74.

Hruska, “$1.5 Billion Microsoft Vista-Capable Booty Hardly Ill-gotten.” (up)75.

Gehl, “Real (software) Abstractions: On the Rise of Facebook and the Fall of

Myspace.” (up)

76.

Turkle, Life on the Screen : Identity in the Age of the Internet, chap. A tale of two

aesthetics. (up)

77.

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

19 of 20 01/27/2014 03:46 PM

Schaefer and Durham, “On the Social Implications of Invisibility.” (up)78.

See docket 131, Kelley V. Microsoft Corporation, FRD 544:7. (up)79.

Docket 131,ibid., FRD 544:35. (up)80.

Ibid., FRD 544:4. (up)81.

Ibid., FRD 544:5. (up)82.

Ibid., FRD 544:137. (up)83.

Ibid., FRD 544:103. (up)84.

Ibid., FRD 544:101. (up)85.

Ibid., FRD 544:104. (up)86.

Ibid., FRD 544:103. (up)87.

Fuller, Software Studies: a lexicon, 4. (up)88.

Mackenzie, Cutting Code, 16. (up)89.

Law, “Notes on the Theory of the Actor-network,” 383. (up)90.

Lash, Critique of Information, 205. (up)91.

Hall, “Cultural Studies: Two Paradigms”; Laclau and Mouffe, Hegemony and

Socialist Strategy; DeLuca, “Articulation Theory.” (up)

92.

Mackenzie, Cutting Code. (up)93.

Greene, “Rhetorical Materialism: The Rhetorical Subject and the General

Intellect,” 45. (up)

94.

Ibid., 55. (up)95.

Kelley V. Microsoft Corporation, FRD 544:5. (up)96.

Ibid., FRD 544:153. (up)97.

Ibid., FRD 544:154. (up)98.

Whitney, “XP Still Top OS, but Windows 7 Hot on Its Trail.” (up)99.

Lai, “Microsoft.” (up)100.

Star, “Power, Technology and the Phenomenology of Conventions: On Being

Allergic to Onions.” (up)

101.

Of course, this wasn’t the only court battle over Vista. The European Union’s

anti-trust inquiries into Microsoft and its later monitoring of Vista for compliance

likely was a factor in dissociating Vista. Because we have focused on Aero, we

have largely bracketed off events such as this. (up)

102.

Law, “Notes on the Theory of the Actor-network,” 385. (up)103.

Specifically, see the concluding chapter of Montfort and Bogost, Racing the

Beam. (up)

104.

Goffey, “Algorithm,” 15–16. (up)105.

See note 1, and Fuller, Behind the Blip, 11. (up)106.

Kitchin and Dodge, Code/Space: Software and Everyday Life. (up)107.

Indeed, very often altering consumption patterns (usually by the panacea of

“raising awareness”) is framed as resistance to capitalist excesses. In the case of

Vista, especially in reaction to its use of Digital Rights Management, one such

movement was the “Bad Vista” protests. See the Free Software Foundation’s

badvista.org. (up)

108.

Series Navigation

<< Editorial Issue TwoText, Speech, Machine: Metaphors for Computer Code in the Law

>>

Tags:Issue two

This Journal is powered by WordPress | Theme: Elements of SEO | Production: B. Kaltenbacher | All Production Acknowledgements

Heterogeneous Software Engineering: Garmisch ... http://computationalculture.net/article/heterogen...

20 of 20 01/27/2014 03:46 PM

